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1. Introduction

The theory of linear acoustics can only deal with waves of infinitesimal amplitudes and
propagating a relatively short distance. As the wave amplitude and/or distance of propagation
increase, the geometrical and physical non-linearities can greatly affect how the wave propagates
in a medium, and phenomena such as shock formation and waveform distortion become
important [1,2].

Most of the works on finite-amplitude plane waves in a tube deal with continuous waves.
Pestorius and Blackstock [3] investigated sinusoidal wave and broadband acoustic noise in an
infinite tube (finite tube with an anechoic termination). Nakamura et al. [4] presented a
computational analysis of the waveform of plane N-waves in a circular tube and concluded that
the slope of the straight-line segment of the waveform is affected by the non-linear distortion and
the boundary layer dissipation.

One application of the study of finite-amplitude pulse propagation in a tube is to assess the
performance of hearing protector devices (HPD) under intense impulsive noise (sound pressure
level greater than 140 dB ref. 20 mPa) using objective methods [5]. This approach uses the
non-linearity to create a train of pulses with different characteristics.

This paper aims at investigating the propagation of a finite-amplitude plane pulse inside a
closed tube. More specifically, the paper investigates whether or not it is possible to simulate a
tube with infinite length using a finite-length tube by verifying how the pulse distorts and if shocks
form despite the dissipation and finite length. The distortion of the pulse is presented in time and
frequency domain. Experimental results are explained based on the theory of non-linear acoustics.

ARTICLE IN PRESS

*Corresponding author. Tel.: +55-48-3319227; fax: +55-48-2334455.

E-mail address: washdelima@hotmail.com (W.J.N. de Lima).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.11.028



2. Propagation of finite-amplitude plane pulse

The theory of non-linear acoustics deals with finite-amplitude waves. By finite-amplitude wave
it means a wave with a small but larger than infinitesimal amplitude, such that the perturbation
parameter, defined as the ratio of the particle velocity to sound propagation velocity, is yet
infinitesimal. The effects of non-linearity are cumulative and even though the perturbation
parameter is small, the non-linearity brings about phenomena such as waveform distortion and
shock formation. Problems with very high amplitudes, such as in explosions, are out of the scope
of non-linear acoustics and they are solved by the theory of compressible fluid dynamics. A
comprehensive analysis and application of the theory of non-linear acoustics can be found in
various books [1,2]. Here, only basic results of the propagation of finite-amplitude progressive
plane waves are presented.

One of the most interesting characteristics of the non-linear wave propagation is the
dependency of the sound velocity cðx; tÞ on the local value of the amplitude of the wave [1,2],

cðx; tÞ ¼ c0 þ ðb� 1Þuðx; tÞ; ð1Þ

where b is the coefficient of non-linearity (b ¼ 1:2 for air), c0 is the small-amplitude sound
speed (c0 ¼ 343 m=s for air), x is the position in the direction of propagation and uðx; tÞ
is the particle velocity. By disregarding local effects [1], the first order relation between
excess pressure and particle velocity can be assumed ðp ¼ r0c0uÞ and therefore, Eq. (1) can be
rewritten as

cðx; tÞ ¼ c0 þ
ðb� 1Þ
r0c0

pðx; tÞ þ Oðe2Þ; ð2Þ

where r0 is the small-amplitude density and e ¼ ju=c0j is the perturbation parameter. Burgers
equation is the simplest model that takes account of non-linear and dissipative aspects on the
propagation of plane progressive waves:
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where d is the diffusivity of sound, t ¼ t � x=c0 is the retarded time. Disregarding attenuation
ðd ¼ 0Þ and assuming a general source condition pð0; tÞ ¼ f ðtÞ; the exact solution of Eq. (3) is
given by

pðx; tÞ ¼ f tþ
bpðx; tÞ
r0c3

0

x

� �
: ð4Þ

From Eq. (4) it is seen that the waveform peaks propagate faster than the waveform troughs
due to the dependency of the solution on the local value of the amplitude of the wave (Eqs. (1) and
(2)). Therefore, as the wave propagates, the waveform distorts and the wave becomes eventually
very steep. There are distances where a discontinuity ð@p=@t ¼ NÞ appears in the solution (shock
formation). The smallest distance where it occurs is called the shock distance formation %x and it is
defined as

%x ¼
r0c3

0

bmaxð@p=@tÞ
: ð5Þ
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The solution given in Eq. (4) is valid only for a distance lower than the shock formation
distance ðxo %xÞ: To describe the propagation after the shock distances ðxX %xÞ the effect of
dissipation must be taken into account.

3. Characterization of a pulse and a Friedlander pulse

Some quantities such as rise time, decay time, and total duration are necessary to qualify the
pulses. These quantities are defined according to ISO 10843 [6]. The rise time trise is the time, in
seconds, a signal takes to rise from 10% to 90% of its peak sound pressure, corresponding to the
difference between t1 and t0 in Fig. 1. The maximum pressure P0 is 80% of the peak pressure
ðP0 ¼ 0:8PpeakÞ: The wavefront slope, s; is the ratio of maximum pressure and rise time, s ¼
P0=trise: The decay time tdecay is the time, in seconds, required for the pulse, after reaching its peak
sound pressure, to decay from 90% to 10% of its peak sound pressure, corresponding to the
difference between the times t3 and t2 in Fig. 1. The duration T is defined as the rise time plus six
times the decay time. The duration represents the point at which the rarefaction of the pulse
reaches asymptotically 1% of the peak pressure [7]. All these parameters are used in the next
section to describe the distortion of the pulse when it propagates inside the tube.

4. Friedlander pulse

The experimental pulses are modelled as an ideal Friedlander pulse. The expression for the ideal
Friedlander pulse is [8]

pðtÞ ¼
P0ðt=triseÞ; 0ptptrise;

P0 1 �
ðt � triseÞ

tdecay

� �
eðt�tdecayÞ=tdecay ; tXtrise:

8><
>: ð6Þ
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Fig. 1. Drawing showing a reverberating pulse with the temporal points used to define the rise time ðtrise ¼ t1 � t0Þ;
decay time ðtdecay ¼ t3 � t1Þ and pulse duration ðT ¼ trise þ 6tdecayÞ:
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Using Eq. (5), for this type of pulse the theoretical shock distance formation is

%x ¼
r0c3

0

b
trise

P0
: ð7Þ

The distortion of a finite-amplitude propagating ideal Friedlander pulse can also be observed
in the frequency domain by observing the changes in the spectrum. The Fourier transform of
Eq. (6) is

PðoÞ ¼ �
1

triseo2
þ e�jotrise

ð1� o2t2decay � 2triseo2tdecayÞ þ jð2otdecay þ triseoÞ

triseo2½ð1 � o2t2decayÞ þ j2ot2decay�
: ð8Þ

For trise5tdecay and frequencies such that otdecayb1; an approximated expression for the
spectral amplitude can be written as

jPðoÞj ¼

ffiffiffi
2

p
o2trise

½1 � cosðotriseÞ�1=2: ð9Þ

From Eq. (9), two frequencies frise and fdecay named rise frequency and decay frequency,
respectively, can be defined. The frequency frise is the point in the spectrum where the amplitude
begin to decrease 12 dB=octav: The frequency fdecay is the point in the spectrum of maximum
amplitude [8]. The frequencies frise and fdecay are related to trise and tdecay as [6]

frise ¼
1

3trise

; fdecay ¼
1

2ptdecay

: ð10; 11Þ

Therefore, a waveform distortion is observed in the frequency domain by investigating the
changes in the frequencies frise and fdecay:

5. Experiments and results

In the experiments, pulses were generated inside a closed tube and allowed to reverberate from
end to end. A pulse generator [8] was connected to one end of a tube of 0:15 m diameter and
12:0 m long (Fig. 2). The other end of the tube was closed with an end-cap while the generator
end, although not completely fixed, had a similarly behavior as a closed end [5]. Two
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Fig. 2. Pulse generator with a tube of 150 mm diameter.
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microphones, which were positioned at distances 1.0 and 6:0 m from the source in the wall of the
tube, measured a train of pulses as multiple reflections of the primary Friedlander pulse occurred
from end to end. The first microphone measured the initial pulse and the second microphone
measured the pulse as it travelled back and forth inside the tube. The distance that the pulse
travelled inside the tube is referred to as the accumulative distance of propagation. Three pulses
were considered with approximately equal initial amplitudes ðP0 ¼ 158 dBÞ but with varying
initial rise times and durations (Table 1) and are named pulses A, B and C.

In Fig. 3 the train of waveforms of pulse B is presented. In this figure the first waveform is the
initial pulse captured by the microphone fixed at 1:0 m ahead of the generator and the rest are
reflections measured by the microphone at 6:0 m (Fig. 2). Similar trains of waveforms exist for
pulses A and C.

As the pulses travelled inside the tube, their amplitudes decreased due to the thermo-viscous
and boundary layer dissipative effects in the fluid and due to the radiation of energy through the
wall and the ends of the tube. The peak-amplitudes of pulses A, B and C decayed linearly in a rate
of 0.056, 0.09 and 0:20 dB=m; respectively. Therefore, the smaller the initial rise time, the higher
the rate of attenuation (Fig. 4).

The distortion of the pulses is measured by the changing of the rise time (Fig. 5) or wavefront
slope (Fig. 6) with respect to the accumulative distance. In the experimental results the wavefront
slope reached a maximum (or rise time reaches a minimum) at a certain accumulative distance.
This distance is named the experimental shock distance %xe: The theoretical shock distance is given
by Eq. (7) where the definition of P0; trise and tdecay follows ISO 10843 [6] (see Section 3).

The values of theoretical experimental shock distance, %x and %xe; for all three pulses are
presented in Table 2. There is a good agreement between the values of %x and %xe for pulses B and C.
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Table 1

Pulses A, B, and C with their respective initial maximum pressure P0; initial rise time trise; and initial duration T

Pulse P0 (kPa) P0 (dB) trise (ms) T (ms)

A 1.6036 158.08 1.30 14.02

B 1.6962 158.57 0.70 10.90

C 1.7766 158.97 0.01 1.21
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Fig. 3. Train of waveforms for pulse B.
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Fig. 5. The variation of rise time with the accumulative distance, key as in Fig. 4.
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Fig. 4. The changing of the peak-amplitude pressure with the accumulative distance: J; pulse A; ’; pulse B; W;
pulse C.
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Fig. 6. The variation of wavefront slope with the accumulative distance, key as in Fig. 4.

Table 2

Pulses A, B, and C with their respective initial maximum pressure, theoretical shock distance %x and experimental

accumulative shock distance %xe

Pulse P0 (kPa) %x (m) %xe (m)

A 1.6036 33.28 18

B 1.6962 16.94 18

C 1.7766 0.23 1
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The small difference between these values is due to the position of microphone 2 that did not
necessarily coincide exactly with the position where the shock formed and also because the
expression for %x does not take in account the dissipative effects. Figs. 5 and 6 show that, although
pulse A has high initial peak pressure ð158:08 dBÞ; it did not change very much its waveform (rise
time or wavefront slope) as it propagated, and therefore, it did not become a shock wave. This
phenomenon occurs because the non-linear effects (i.e., variation in the rise time) are overcome by
the dissipative effects and, in turn, explain the poor agreement between %x and %xe for this pulse
(Table 2). Although the formation of shock is observed either from wavefront slope or rise time,
Figs. 4 and 5 show that the wavefront slope is more sensitive to shock formation than it is to the
rise time.

The ratio of the rise time to the duration is used to investigate the existence of a shock.
Theoretically, shock forms when the ratio of the rise time to the duration is zero, but this criterion
is never satisfied in an experiment. Hence, it is said that a shock has formed if the rise time is much
smaller than the duration. Fig. 7 shows how the ratio of the rise time to the duration changes as
the pulses propagate. Since pulses B and C became shock waves (Table 2), it is concluded that a
shock formed when the rise time is smaller than 1% of the duration. Note that the minimum value
of the ratio of the rise time to the duration of pulse A is around 4%, which corroborates the
previous conclusion that pulse A never became, a shock wave.

Just after the shock there was a change in the rise time of pulse B (Fig. 5), which indicates that
the shock wavefront was not sustained for long due to dissipation. However, the wavefront slope
for pulse B reached a maximum again at an accumulative distance of propagation of 66:0 m; but
at this distance the rise time did not reach a well-defined minimum and the ratio of the rise time to
the duration was above 1%. Therefore, at 66:0 m the pulse B did not become a shock. In fact after
66:0 m the shock pulse B became a finite-amplitude pulse and eventually a linear pulse before it
disappeared. Pulse C is generated as a shock wave but the shock wavefront disappeared quickly
and the pulse propagated with constant rise time. This behavior of pulse C is due to its high rate of
attenuation that consumes the discontinuity of the shock wavefront.

A similar analysis is done in the frequency domain. Table 3 presents frise and fdecay when the
pulses A, B and C reached their smallest rise time. Figs. 8 and 9 show the changes of frise and fdecay

with the accumulative distance. As is seen in the Fig. 9, the decay frequency (or decay time) did
not change very much as the pulse propagates, and therefore, it did not inform when a shock
forms.
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Fig. 7. The variation of the ratio of rise time to duration with accumulative distance, key as in Fig. 4.
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6. Conclusion

The propagation of finite-amplitude plane pulse in a finite-length circular tube was investigated.
The experimental results were explained in the light of non-linear acoustics. Due to the reflections
on the ends of the tube, by generating only one pulse, it is possible to create a train of pulse, with
different non-linear characteristics. Therefore, a finite-length closed tube can be used to simulate
the propagation of a finite-amplitude pulse in an infinite tube. Shock waves form despite the
dissipation and tube finite length. The rate of attenuation and distortion of the pulse with
the distance depends upon the initial rise time and duration. The smaller the initial rise time, the
higher the rate of attenuation. Although the formation of shock is observed either from wavefront
slope or rise time, the wavefront slope is more sensitive to shock formation.
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Table 3

Pulses A, B, and C with their smallest rise time trise and the respective rise frequency frise; decay time tdecay and decay

frequency fdecay

Pulse %xe (m) trise (ms) frise (Hz) fdecay (ms) tdecay (Hz)

A 18 0.62 537.63 3.08 51.61

B 18 0.10 3334 2.70 58.95

C 1 0.01 33334 0.20 795.77
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Fig. 8. The variation of rise frequency with accumulative distance, key as in Fig. 4.
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Fig. 9. The variation of decay frequency with accumulative distance, key as in Fig. 4.
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